

IComSat v1.0

-SIM900 GSM/GPRS shield

Overview

IComsat is a GSM/GPRS shield for Arduino and based on the SIM900 Quad-band GSM/GPRS module. It is controlled via AT commands (GSM 07.07 ,07.05 and SIMCOM enhanced AT Commands), and fully compatible with Arduino / Iteaduino and Mega.

Features

- Quad-Band 850/900/1800/1900MHz
- GPRS multi-slot calss 10/8
- GPRS mobile station class B
- Compliant to GSM phase 2/2+
- Class 4 (2W@850/900MHz)
- Class 1 (1W@1800/1900MHz)
- Control via commands (GSM 07.07, 07.05 and SIMCOM enhanced AT Commands)
- Short message service
- Free serial port selection
- All SIM900 pins breakout
- RTC supported with SuperCap
- Operation temperature: -40°C ~ +85°C

Specifications

PCB size	71.4mm X 66.0mm X 1.6mm		
Indicators	PWR, status LED, net status LED		
Power supply	9~20V, compatible with Arduino		
Communication Protocol	UART		
RoHS	Yes		

Electrical Characteristics

Specification	Min	Туре	Max	Unit
Power Voltage (Vlogic)	4.5	5	5.5	VDC
Power Voltage (Vsupply)	9	-	20	VDC
Input Voltage VH:	4.5	5	5.5	V
Input Voltage VL:	-0.3	0	0.5	V
Current Consumption (pulse)	-	-	2000	mA
Current Consumption (Continues)			500	mA
Baud rate		9600		bps

Hardware

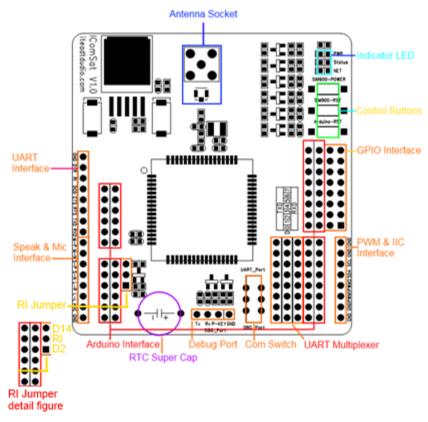


Figure 1 Top Map

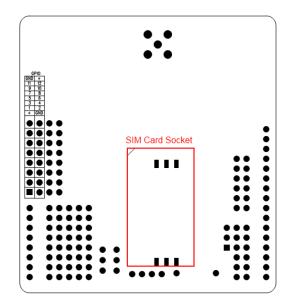


Figure 2 Bottom Map

Interface	Pin	Description
	1	VDD*
	2	GND
	3	GPIO1
	4	GPIO2
	5	GPIO3
	6	GPIO4
	7	GPIO5
GPIOs	8	GPIO6
GPIOS	9	GPIO7
	10	GPIO8
	11	GPIO9
	12	GPIO10
	13	GPIO11
	14	GPIO12
	15	GND
	16	VDD*
	1	GND
	2	DTR
	3	RI
	4	DCD
UART	5	CTS
	6	RTS
	7	TXD
	8	RXD
	1	GND
	2	GND
	3	IIC_SCL
IIC&PWM	4	IIC_SDA
IICAPVIN	5	PWM2
	6	PWM1
	7	GND
	8	GND
	1	GND
Dahua Dari	2	PERKEY
Debug_Port	3	DBG_RXD
	4	DBG_TXD

VDD* = 3.0V

Note 1: the operation level of the port is 3.0V

Installation

UART Multiplexer (For free UART connection setting)

You can use the jumper to connect the TXD and RXD pins on SIM to any pins of Arduino D0 – D7.

lacksquare			•	•		TXD
\bullet			•	•	D	0 1 2 3 4 5 6 7
						RXD

Figure 3 UART Multiplexer

When using the connection as Figure 4, the SIM900 connect to the ATMega328 chip on board.

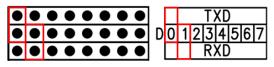
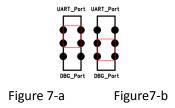


Figure 4 Connect the Arduino board

When you using the connection as Figure 5, the SIM900 connect with the FT232RL chip, and the FT232RL connect to PC by USB. Whit this configuration you can use the serial software on PC to control or configure the SIM900 module.

Figure 5 Connect the UART Interface as FT232


Except the 2 configurations above, you can connect the TXD and RXD to any other pins from D0-D1, and using the software-serial library to control the SIM900 moudle.

		۲	۲	lacksquare	۲	\bullet		TK			
lacksquare	\bullet		ullet	lacksquare	lacksquare	lacksquare	D012	234	5	6	7
	•		۲		ullet	\bullet		RXE)		

Figure 6 an example for software-serial connection

Com Switch

There is a com switch for selecting the communicate port to UART port or Debug port of SIM900 module as the following figure 7. When connect to the SIM900 debug port, the UART multiplexer just can be set as Figure 4 or 5.

RI Behavior Output

There is a Jumper for configuration of RI, one to connect D2, another to connect D14.

Status	RI response			
Standby	High			
	The pin is changed to low. When any of the following			
Voice call	events occur, the pin will be changed to high:			
voice call	(1) Establish the call			
	(2) Hang up the call			
	The pin is changed to low. When any of the following			
Data call	events occur, the pin will be changed to high:			
Data Call	(3) Establish the call			
	(4) Hang up the call			
SMS	The pin is changed to low, and kept low for 120ms			
21012	when a SMS is received. Then it is changed to high.			
	The pin is changed to low, and kept low for 120ms			
URC	when some URCs are reported. Then it is changed to			
	high.			

The behavior of the RI pin is shown in the following figure when SIM900 module is used as a receiver.

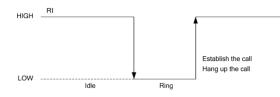


Figure 8 RI behavior of voice calling as a receiver

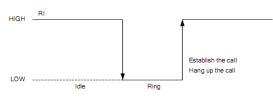


Figure 9 RI behavior of data calling as a receiver

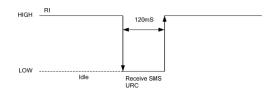


Figure 10 RI behavior of URC or receive SMS

When the IComSat is used as caller, the RI will remain high.

Indicator LED and Buttons:

NETSTATUS: The status of the NETSTATUS LED is listed in following table:

Status	Description			
Off	SIM900 is not running			
64ms On/800ms Off	SIM900 not registered the network			
64ms On/3000ms Off	SIM900 registered to the network			
64ms On/300ms Off	GPRS communication is established			

STATUS: Power status of SIM900.

PWR: Power status of IcomSat.

SIM900-POWER: After the IcomSat power on, you need to press the SIM900-POWER button for a moment to power on the SIM900 module.

Sim900-RST: Reset the SIM900

Arduino-RST: Reset the Arduino.

Revision History

Rev.	Description	Release date
v1.0	Initial version	2011-5-27
V1.1	Add the RI description, and fix some typo	2011-7-22